
philipp schaad

M U LT I - D E V I C E G P U - C O D E G E N E R AT I O N W I T H
L LV M

M U LT I - D E V I C E G P U - C O D E G E N E R AT I O N W I T H L LV M

philipp schaad

D-INFK
ETH Zürich

April-September 2017

Philipp Schaad: Multi-Device GPU-Code Generation with LLVM, ©
April-September 2017

supervisors:
Prof. Dr. Torsten Hoefler
Dr. Tobias Grosser

location:
Zürich

time frame:
April-September 2017

A B S T R A C T

General purpose GPU computing is becoming increasingly more rel-
evant in terms of leveraging massively parallel processing power, but
writing code for the very heterogeneous space of GPU architectures is
often cumbersome. We propose a solution that enables the automated
generation of device independent GPGPU code in the compiler in-
frastructure project LLVM. There exist a number of different tools for
generating GPGPU code from a set of given source languages but
they are typically limited to one GPU architecture or can only work
with few source languages. We offer a way to utilize the modular
power of LLVM and standards like OpenCL to escape such limita-
tions by extending LLVM’s polyhedral optimizer with an OpenCL
runtime and SPIR code generation, allowing execution of GPGPU
code on any compatible device. By opening new doors for executing
the same code on multiple different platforms, this allows us to build
performance models that tell us where our code can be run most ef-
ficiently, and potentially enables the execution of GPGPU code on
multiple different devices in parallel. Additionally, transporting code
from one architecture to a different one does not require the code to
be rewritten, thus greatly reducing the time investments in an archi-
tectural change.

v

C O N T E N T S

i introduction 1

1 introduction 3

1.1 Contributions 4

1.2 Background 4

1.2.1 GPU Computing 4

1.2.2 OpenCL and SPIR(-V) 5

1.2.3 Presburger Sets and Relations 6

1.2.4 Polyhedron Model 7

1.2.5 Polly 9

ii multi-device gpu-code generation in llvm 11

2 architecture 13

2.1 Overview 13

2.1.1 GPGPU Code Generation 13

2.1.2 CUDA Code Generation 14

2.2 OpenCL Runtime 16

2.3 SPIR Code Generation 17

2.4 AMD Code Generation 20

3 evaluation 23

3.1 OpenCL Runtime 23

3.2 SPIR Code Generation on Intel 25

3.3 AMD Code Generation 28

3.4 Summary 29

4 future work 31

4.1 SPIR-V 31

4.2 Performance Models 31

4.3 Concurrent Heterogeneity 32

4.4 Architecture Specific Optimizations 32

4.5 Exploiting Unified Memory 32

5 related work 35

6 conclusion 37

iii appendix 39

a appendix 41

b Declaration 43

bibliography 45

vii

L I S T O F F I G U R E S

Figure 1 An overview of Polly’s multi device GPGPU

code generation (Modified overview from
Grosser et al. [16]) 14

Figure 2 Speedup when using GPGPU generation for
NVIDIA with OpenCL over standard compi-
lation without Polly 24

Figure 3 Speedup of using the OpenCL runtime versus
the CUDA runtime 24

Figure 4 Speedup when using GPGPU generation for In-
tel over standard Polly optimizations and only
-O3 - Smaller datasets 26

Figure 5 Speedup when using GPGPU generation for In-
tel over standard Polly optimizations and only
-O3 - Extra large dataset 26

Figure 6 Speedup simulation of exploiting unified
memory on Intel platform 27

Figure 7 Percentage of kernel runtime spent copying
data on Intel platform 28

Figure 8 Comparison of the speedup obtained via map-
ping to accelerator versus clang’s -O3 op-
timization on the Intel and NVIDIA plat-
form 29

Figure 9 Performance gain of GPU mapping with and
without zero-copy behavior on Intel platform,
compared to CPU-only optimization (-polly)
and clang’s -O3 41

Figure 10 Speedup of GPU mapping with zero-copy
behavior over clang’s -O3 on Intel plat-
form 41

L I S T O F TA B L E S

Table 1 Hardware specifications for NVIDIA plat-
form 23

Table 2 Hardware specifications for Intel plat-
form 25

Table 3 Hardware specifications for AMD plat-
form 28

viii

L I S T I N G S

Listing 1 Loop nest that can be transformed using the
polyhedron model 8

Listing 2 A toy example of CUDA-ready LLVM-IR 15

Listing 3 Listing 2’s toy example, but in SPIR-ready
LLVM-IR 18

Listing 4 Listing 2’s toy example, but in AMDGPU-
ready LLVM-IR 20

A C R O N Y M S

AST Abstract Syntax Tree

CFG Control Flow Graph

GPGPU General-Purpose GPU

ISA Instruction Set Architecture

isl integer set library

LLVM-IR LLVM Intermediate Representation

NUMA Non Unified Memory Architecture

PST Program Structure Tree

PTX Parallel Thread Execution

ROCm Radeon Open Compute

SCoP Static Control Part

SESE Single Entry Single Exit

SIMD Single Instruction Multiple Data

SPIR Standard Portable Intermediate Representation

ix

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

In the past decades, the performance and speed of single-core pro-
cessors has been steadily increasing. However, Moore’s Law [25] and
Dennard-Scaling [11] have started to fail, and it has become increas-
ingly difficult and more expensive to pack more performance into a
single processing unit [10]. Thus, in order to reach better performance,
the goal has become to elevate the importance of parallel computa-
tion, utilizing multi-core CPUs and multi-processor systems to dis-
tribute the computational effort between different processing units.
More recently, we have even started to harness the power of GPUs
for this purpose, since they have been designed with parallelism in
mind, which gives them a clear edge over CPUs in terms of parallel
information processing [29].

However, to date a lot of the code being written is not particularly
well optimized to utilize that new dimension of performance, instead
heavily relying on sequential computation and containing loop nests
that could be parallelized more effectively. In addition to that, writing
good parallel code or adapting older code to this paradigm is often
coupled with higher development costs, and the resulting code is
generally more complex, making further development more difficult
and expensive. There exist a number of tools and solutions, that allow
the optimization of sequential program code to parallel or hybrid
code using polyhedral techniques [31]. One of those tools is called
Polly [18, 30], an extension to LLVM, working on LLVM’s intermediate
language.

LLVM [20, 21] is a compiler infrastructure project that encompasses
a wide collection of modular technologies, including the aforemen-
tioned language and platform-independent LLVM Intermediate Repre-
sentation (LLVM-IR), reusable optimizers and analysis tools, in addi-
tion to a number of language specific front-ends and target code gen-
erators. The modular design allows it to be used for a broad range
of different programming languages, making it relatively easy to im-
plement and add new front- and back-ends, while still using LLVM’s
optimizer. There already exist a number of front-ends for most of
the well known and heavily used programming languages, and a lot
of the most used target architectures - like x86(-64), ARM, PowerPC,
MIPS, and even some graphics accelerators and C - already have code
generation back-ends. This makes it a perfect parent project for Polly,
especially in terms of re-usability.

Polly’s code generation has recently been extended to generate
General-Purpose GPU (GPGPU) code [16], allowing generated parallel

3

4 introduction

code to benefit from the increased parallel processing capabilities of
GPUs. However, the GPU world is incredibly heterogeneous with the
mobile GPU market alone bringing a huge number of different archi-
tectures to the table, making it difficult to write or generate code for
multiple devices [34]. Polly’s GPU code generation is also hindered
by that diversity and thus currently only has the ability of generat-
ing Parallel Thread Execution (PTX) kernel code, which is NVIDIA’s
assembly-like intermediate language that can only be executed on
supporting NVIDIA GPUs.

The goal of this work thus, is to extend Polly with the capability
of generating GPGPU code for most of the major GPU architectures.
We provide Polly with an interface to the OpenCL [28, 39] runtime
library in addition to the current CUDA [26] interface, which en-
ables the execution of SPIR/SPIR-V [38] kernel code (an intermediate
language introduced in 2011 to develop device-independent binaries
with OpenCL), allowing compilation to a vastly broader range of de-
vices in the heterogeneous GPU spectrum.

1.1 contributions

We first provide an introduction to the background relevant for our
work in Section 1.2. Chapter 2 forms an architectural description of
our implementations:

• In Section 2.2 we introduce our OpenCL runtime library inter-
face

• We discuss SPIR code generation in Section 2.3

• AMD support gets introduced in Section 2.4

In Chapter 3 we will evaluate the performance of our solution, pro-
vide some pointers to future and related work in Chapter 4 and Chap-
ter 5, and finally offer our conclusions in Chapter 6.

1.2 background

In this section we will introduce a few important notions that re-
appear throughout our work and give additional background to some
of the concepts touched upon in the Introduction.

1.2.1 GPU Computing

The GPU has been designed to be strong in its original field of ap-
plication: working with and rendering 3-D graphics. An object in the
3-D world coordinate system is made up of a set of geometric primi-
tives like triangles. That set of primitives is fed into the GPU, where
each vertex of every primitive has to be transformed into the screen

1.2 background 5

space and shaded, meaning its interaction with light has to be com-
puted. Since 3-D objects are often complex and the worlds we want to
model and render are sometimes large, containing many objects, the
number of vertices passed to the GPU can be enormous. However,
they can all be computed independently of each other. The vertices
are now assembled into triangles and mapped to their 2-D pixel loca-
tions where they form so called fragments. Each pixel’s color informa-
tion gets computed from the fragments interacting with it, possibly
together with textures. Again, the number of pixels on a screen is
large, but each pixel’s color can be computed independently. Because
of this parallel nature of graphics processing, the GPU’s architecture
has been designed to be a collection of smaller parallel processors.

Originally, GPUs have been implemented as fixed-function proces-
sors only able to excel in graphics rendering, but not much else. Over
the past few years however, the architecture has gradually evolved to
the point where fixed-function operations being run on every vertex
and fragment have been replaced with functions provided by the user.
This allows for an increased flexibility in the type of work with which
the GPU can be tasked.

At the beginning of this development, customized GPGPU computa-
tions still had to be given to the GPU via graphics APIs, meaning pro-
grams had to be structured according to the graphics pipeline. This
made GPGPU computations still very cumbersome and difficult to use
for the average programmer. Emerging programming environments
like NVIDIA’s CUDA [26] later addressed that problem by providing
a more direct interaction with the programmable parts of the GPU
and easier to understand syntax. Through such environments, GPGPU

programming no longer is a tool used by only few researchers, but
has been made available to the common programmer, requiring little
to no knowledge about the graphics pipeline [29].

1.2.2 OpenCL and SPIR(-V)

OpenCL [28] is an industry standard that aims to provide task-
parallel and data-parallel computing on a variety of different micro-
processors, including graphics accelerators, CPUs and even FPGAs,
while trying to hide heterogeneity and keeping the source code plat-
form independent. The existing software environments mentioned in
Section 1.2.1 have generally been limited to a single type of architec-
ture, and the required source code did not run on any other micro-
processor families (for example CUDA, which only runs on NVIDIA
hardware). OpenCL thus provides a number of core functionalities
that are supported by all devices with an OpenCL implementation.
The list of OpenCL supporting hardware is continuously growing
but major vendors like Intel, AMD, NVIDIA, ARM and Qualcomm

6 introduction

(non exhaustive list) [27] all support OpenCL through their driver
implementations [39].

OpenCL’s core contributions are a common language for accel-
erator programming, standardized APIs, and lots of hardware ab-
stractions, allowing easier development of accelerated task- or data-
parallel applications. The standard OpenCL environment consists of
a host CPU and any number of attached heterogeneous OpenCL de-
vices, like GPUs, that typically have a completely different machine
instruction set than the host CPU.

Run-time compilation is the driving force behind OpenCL’s com-
patibility with different instruction sets. Device vendors ship OpenCL
implementations in their drivers, providing run-time kernel compil-
ers into their own instruction set. While this allows OpenCL pro-
grams to run natively on any target hardware, even if the developer
does not have access to the platform, it does not guarantee that a
particular program is optimized for peak performance on all architec-
tures. However, even if a device vendor decides to make large changes
to their instruction sets, drivers or supporting libraries, this remains
hidden from the programmers perspective, and OpenCL will auto-
matically utilize the latest features on the target device. OpenCL pro-
grams can still be pre-compiled off-line and shipped as binaries, at
the cost of compatibility with heterogeneous hardware.

SPIR is a mapping from OpenCL C code to LLVM-IR, that aims to pro-
vide a portable interchange format for partially compiled OpenCL C
programs [35, 41]. The goal is to provide the means of distributing
device independent binaries rather than kernel source code in its cor-
responding OpenCL C format. Many device vendors support the nec-
essary extension in their drivers to read and execute OpenCL kernels
in their SPIR format. This means that one can easily generate a valid
OpenCL kernel binary from within LLVM, without having to commit
to a specific architecture.

1.2.3 Presburger Sets and Relations

Any program expression e is affine if it is one of the following:

• An integer constant (c)

• A variable (n)

• The negation of an affine expression (−e)

• The addition or subtraction of two affine expressions (e1 ± e2)

• The multiplication of an integer constant with an affine expres-
sion (c ∗ e)

If instead it is the floor division of an affine expression by an (integer)
constant (becc) or that division’s remainder (e mod c), we call it quasi-
affine.

1.2 background 7

Building on that, a Presburger expression (or Presburger formula)
[16] is an expression ep made up of:

• A boolean constant (>, ⊥)

• A boolean negation, conjunction or disjunction (¬ep, ep1 ∧

ep2, ep1 ∨ ep2)

• A quantifier expression (∀x : ep, ∃x : ep)

• A comparison between (quasi-)affine expressions (e1 � e2,
� ∈ {<, 6, >, >, 6=, =})

An n-dimensional Presburger set S is a subset of Zn where the
elements of S are described by a Presburger formula [16]. The sets

S1 = {(x0, x1) | p0 = (50 6 x0 6 100)∧ p1 = (0 6 x1 6 x0)}

and

S2 = {(x2, x3) | p2 = (0 < x2 6 20)∧ p3 = (x2 6 x3 < 50)}

are two examples of valid Presburger sets in Z2 since p0, p1, p2 and
p3 are Presburger formulas. An empty two-dimensional Presburger
set can be expressed with Se = {(x4, x5) | ⊥}, and a universal n-
dimensional Presburger set gets described with Sn = {(y0, ...,yn)}.

We can obtain Presburger sets with elements from different name
spaces by correctly annotating them with the corresponding name
space. For example a set with elements from name spaces A and B

could have the form SAB = {[A, (x0, x1)] | 0 6 x0 < x1; [B, (x2)] | 50 <

x2 < 70}. Such sets are aptly called named Presburger sets.

Finally, a Presburger relation r is a binary relation of the form
r = {(x0, x1) 7→ (f0) | p0}, forming a subspace of Zn ×Zm which is
constrained by a Presburger formula p0. Presburger sets and relations
are closed under normal set operations such as union, intersection, or
subtraction and allow the projection onto subspaces [16].

For a more detailed and formal explanation on Presburger formu-
las, sets and relations, see Verdoolaege [44].

1.2.4 Polyhedron Model

Code optimization via polyhedral techniques mainly relies on the
transformation of so called Static Control Parts (SCoPs) in the source
code, though it is possible to apply the polyhedral model to more
general programs [8]. SCoPs are loop nests formally defined as the
maximum number of consecutive program statements, where all (up-
per and lower) loop bounds and conditionals are Presburger ex-
pressions containing only surrounding loop iterators, numerical con-
stants, and/or structure parameters (constants whose values are not
known at compile-time, but remain fixed once assigned) [6, 13]. Note

8 introduction

Listing 1: Loop nest that can be transformed using the polyhedron model

1 for (int i = 1; i < n; i++) {

2 for (int j = 1; j < i + m; j++) {

3 A: M[i, j] = M[i-1, j] + M[i, j-1];

4 }

5 B: M[i, i+m+1] = M[i-1, i+m] + M[i, i+m];

6 }

that those requirements have to be semantically fulfilled, not necessar-
ily syntactically. This implies that any control flow structure is a valid
SCoP if it can be written as a set of loops and conditionals contain-
ing only Presburger expressions. Listing 1 shows a slightly modified
example of a basic SCoP taken from Feautrier [14].

The polyhedron model is an abstract graph representation of such
SCoPs in which it is easier to reason about possible parallel execu-
tions. Each program statement S inside a SCoP gets assigned an n-
dimensional (Zn) polyhedron DS, called its iteration domain, where
n is the number of loops surrounding S inside the SCoP (also called the
depth d(S)). E.g., for the SCoP in Listing 1 we get depths of d(A) = 2

and d(B) = 1 for statements A and B respectively. DS is made up
of n-dimensional vectors representing every loop iteration in which
statement S executes. The elements of said vectors contain the current
values of all surrounding loop iterators in that iteration. Each of the
vectors forms a point in our Zn graph representation.

For statement A and B in Listing 1 the resulting iteration domains
thus are

DA = {(i, j) | 1 6 i 6 n, 1 6 j 6 i+m}

and

DB = {(i) | 1 6 i 6 n}

respectively. We can obtain the iteration domain Dscop for our entire
SCoP by unifying the iteration domains of all statements inside the
SCoP. In the case of our example, the resulting domain is Dscop =

DA ∪DB = {(i, j) | 1 6 i 6 n, 1 6 j 6 i+m}∪ {(i) | 1 6 i 6 n}.

The main optimization steps of polyhedral optimizers are coordi-
nate transformations on the source iteration domain of a SCoP. The ba-
sic procedure is to transform all the relevant SCoPs of a program into
their respective polyhedron representation, then performing transfor-
mations on the SCoP’s iteration domain, before using the resulting
target domain to generate new code. A correct transformation must
not violate any of the original data dependencies, meaning that if two
or more operations access the same memory location and include at
least one write operation, their order must be preserved. This de-
pendency between statements can be expressed as a relation on the

1.2 background 9

iteration domain, mapping dependent operations to its source. The
optimization step now is extremely flexible, because the goal is sim-
ply to find the best transformation matrix with the goal of maximiz-
ing a desired objective function, like exploiting parallelism as much
as possible. Note that more recent approaches like Polly do not in
fact modify the actual iteration domain itself anymore, but instead
impose a scheduling relation on the domain, which determines the
new execution order.

1.2.5 Polly

Polly mostly follows the pattern described in Section 1.2.4, but de-
tects semantically valid SCoPs in the program source completely au-
tomatically. Since the input to Polly is a program in LLVM-IR, the
semantic validity can be easily checked thanks to a number of anal-
ysis passes offered by LLVM, meaning that the original source code
does not have to adhere to a specific syntactic structure. Polly uses
a region-based SCoP detection, where the program’s Control Flow
Graph (CFG) is used to identify the relevant program parts. More
specifically, it relies on a modified version of the Program Structure
Tree (PST) introduced by Johnson [19].

The nodes inside a PST represent so called Single Entry Single Exit
(SESE) regions in the program source. Such a region is a section of
the CFG, which is only connected to the rest of the graph by a single
entry edge and a single exit edge, meaning it can be represented
by a function call. Such a function call can thus easily be replaced
by a call to an optimized version, without affecting the control flow.
Polly searches for the maximal regions inside the CFG of a function,
to detect its largest possible SCoPs.

After finding the valid SCoPs, they get transformed into their poly-
hedral representation. Polly has native support for Z-polyhedra and
polyhedron operations, thanks to the integer set library (isl) devel-
oped by Verdoolaege [42]. As mentioned in Section 1.2.4, Polly does
not change the domain of program statements. Instead, it applies all
transformations to the scheduling relation imposed on the domains.
This is done in part because this way it is easy to obtain the compo-
sition of two transformations, by just taking the composition of their
two scheduling relations [18]. The resulting polyhedral representa-
tion then gets used to get back a generic Abstract Syntax Tree (AST)
[17], which gets translated back into LLVM-IR.

The addition of GPU code generation with Polly-ACC by Grosser et
al. [16] brings a lightweight CUDA runtime interface to Polly and al-
lows the extracted and optimized SCoPs to be translated into GPU
specific compute kernels. It automatically decides whether or not
to perform accelerator mapping, and does not require any specific

10 introduction

coding styles to be enforced. However, to date, Polly can only tar-
get NVIDIA GPUs because the kernel code generation is limited to
the NVPTX LLVM back-end, which produces PTX executable only by
NVIDIA CUDA accelerators.

Part II

M U LT I - D E V I C E G P U - C O D E G E N E R AT I O N I N
L LV M

2
A R C H I T E C T U R E

2.1 overview

We first provide an overview (see Figure 1) of Polly’s accelerator
mapping and our contributions (, , and) to it. Since Polly

is part of LLVM, we can use a number of different front-end compilers
- to translate a large variety of programming languages -
into LLVM-IR , where we then perform our polyhedral optimiza-

tions and accelerator mapping.
The resulting LLVM-IR first gets run through a series of canonicaliza-

tion passes with the goal of simplifying control flow, translating
memory to registers, and optionally performing inlining to reduce
the level of abstraction and make the code easier to work with.

The two following steps have been roughly outlined in Section 1.2.5.
Polly automatically detects valid SCoPs in the canonicalized LLVM-IR

and extracts them as parts to be optimized . Once the relevant
SCoPs have been extracted, Polly transforms them into their polyhe-
dral representation and continues to optimize the scheduling relation
describing them .
Polly now decides on which parts of the schedule tree would bene-

fit from being run on an accelerator and marks them accordingly .
Those parts then get mapped to the accelerator using a recent version
of PPCG [45]. Together with that, Polly introduces the necessary data
transfers between global and shared memory.

2.1.1 GPGPU Code Generation

The schedule tree containing the correct device mapping now gets
translated back into a generic AST [17], which in turn gets used to re-
generate LLVM-IR. This is accomplished by first translating the AST’s
outer layers into code that should be run on the host device , before
parts are reached, that are meant to be run on accelerators.

In steps through we now insert a few device specific run-
time API calls into the host code to correctly launch the kernels. To-
gether with that, the kernel IR is extended with special calls and prim-
itives according to which device they were mapped to. Such calls
include memory accesses, inter-thread synchronization, and thread-
identification/-numbering. The resulting kernel code gets loaded into
separate modules which can now be either directly embedded back
in to the host IR , or get passed through the relevant LLVM tar-

13

14 architecture

Figure 1: An overview of Polly’s multi device GPGPU code generation (Mod-
ified overview from Grosser et al. [16])

get code generation back-end (and) to retrieve device specific
IR/Assembly before being merged with the host code.

The resulting combined IR module can now finally be run through
the host’s target back-end, the assembler and the linker . In this
last step we link our program against a data management library
(also referred to as our GPU runtime library), which has the duty
of optimizing and managing data transfers between accelerators and
host. This library is also responsible for providing and handling calls
to the GPGPU compute APIs OpenCL and CUDA and their respective
runtime libraries / . Our completed multi-device executable fi-
nally gets emitted after the linking step .

For a more detailed explanation and a closer look at the individual
steps up to this point, see Grosser et al. [16].

2.1.2 CUDA Code Generation

We will now take a closer look at what Polly has been capable of do-
ing up to now in terms of GPU device specific target code generation,
namely the creation of CUDA PTX assembly. This procedure can be
split into two parts: CUDA specific IR generation and translation
to PTX assembly .

In the first step, we insert the aforementioned device specific anno-
tations, primitives and API calls into the kernel IR. In this case we’re
talking about the CUDA API. While there are tons of CUDA specific
API calls, annotations, and primitives, only a couple of them are rel-
evant for our Polly kernels. Listing 2 shows a silly toy example of
CUDA specific LLVM-IR that does nothing other than add the current
Block- and Grid-IDs1 together and return, storing the result in the

1 Block- and Grid-IDs are used to determine the GPU thread’s indexing number where
the kernel is currently being executed on

2.1 overview 15

Listing 2: A toy example of CUDA-ready LLVM-IR

1 target datalayout = "e−p:64:64:64− i1 :8:8− i8 :8:8− i16 :16:16−" \

2 " i32 :32:32− i64 :64:64−i128 :128:128−" \

3 " f32 :32:32−f64 :64:64−v16:16:16−v32:32:32−" \

4 "v64:64:64−v128:128:128−n16:32 :64 "
5 target triple = "nvptx64−nvidia−cuda"
6

7 define ptx_kernel void @kernel(i32* %res) {

8 entry:

9 %0 = call i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()

10 %1 = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()

11 %2 = add i32 %0, %1

12 store i32 %2, i32* %res

13 ret void

14 }

15

16 declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()

17 declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()

18 !nvvm.annotations = !{!0}

19 !0 = !{void (i32*)* @kernel, !"maxntidx", i32 32, !"maxntidy",
20 i32 1, !"maxntidz", i32 1}

return parameter. It perfectly shows all of the small additions and
changes to the IR to make it CUDA compatible.

First, we need to specify the target datalayout, which indicates
data-type size, offset, and alignment properties to the target code gen-
eration back-end (NVPTX in our case). Next is the target triple.
This tells LLVM that we want to use the NVPTX back-end to gen-
erate CUDA compliant code for an NVIDIA graphics card. Together
with that, the kernel function gets annotated with ptx_kernel, which
dictates the calling convention used to call the function. The mod-
ule itself also gets some named metadata (nvvm.annotations) to tell
the CUDA runtime what the maximum number of GPU threads for
the execution should be. Finally, the correct calls for GPU thread-
indexing and -synchronization are inserted (lines 9 and 10 in Listing 2

show examples of CUDA thread indexing calls).

In the second step we pass the CUDA compliant LLVM-IR obtained
this way to the NVPTX target code generation back-end. NVPTX
takes on the job of translating the IR to valid PTX assembly code,
which then gets embedded back in the host program. When we exe-
cute our binary, this PTX assembly code gets passed along to the GPU
runtime library, where CUDA launches it on an accelerator.

It is obvious that up to this point the full potential in the modular-
ity and re-usability of LLVM’s code generation back-end architecture
has not yet been exploited. By only generating PTX with NVPTX we
effectively are bound by two hefty limitations. For one, PTX assembler

16 architecture

code can only be run on NVIDIA devices, and Polly’s GPU runtime
library needs to have a CUDA API present on the target system.

2.2 opencl runtime

In our first contribution we thus eliminate the second limitation by
extending Polly’s data management library with a lightweight inter-
face to the OpenCL runtime API in addition to the already present
CUDA interface. Having access to the OpenCL runtime library has
two big implications.

For one, we are no longer limited to systems running CUDA.
Polly’s GPGPU code generation now only requires at least one
of the two compute libraries to be installed. This addition is de-
signed in such a way that the data management library’s API re-
mains identical to the host program, independent of which run-
time API is being used. The user can thus freely choose be-
tween the two runtimes - if they are both available - using the
flag -polly-gpu-runtime=libcudart/libopencl. Different initializa-
tion calls to the data management library are inserted into the host
code according to the user’s selection, but the remaining interactions
with the library remain unchanged. This minimal invasive approach
keeps complexity in the host program low and modularity as well as
flexibility high.

In addition to that, the use of OpenCL as a GPU compute library
builds an important foundation for us to run GPGPU code on any
number of different accelerator architectures. As mentioned in Sec-
tion 1.2.2, OpenCL’s aim is to provide platform independent GPGPU

computing for a huge variety of devices, including GPUs, CPUs, and
FPGAs. Having direct access to the OpenCL runtime through our
data management library thus makes Polly’s GPU code generation
future proof, allowing the later addition of pretty much any architec-
ture by simply adding a new IR code generation step - .

On NVIDIA devices, the PTX kernel code generated that way can be
executed via OpenCL by treating it as a pre-compiled kernel binary
(OpenCL’s intermediate representation for kernels compiled online
on NVIDIA devices is also PTX), just like it would be with CUDA. We
just need to adapt two minor things when generating the code:

• The target triple needs to be changed to
"nvptx64-nvidia-nvcl" to indicate use of OpenCL instead of
CUDA

• Kernel arguments that are pointers to GPU memory need
to be annotated with address space indicators, typically
addrspace(1), which stands for global memory

2.3 spir code generation 17

Since the second change gets ignored by CUDA, we now always an-
notate address space indicators, even when compiling for CUDA. The
target triple changes based on the runtime flag chosen at compile
time.

2.3 spir code generation

Our second contribution aims to reduce the restriction the use of PTX

assembly imposes on us, by providing Polly with SPIR code genera-
tion. As discussed in Section 1.2.2, SPIR is a mapping from OpenCL C
into LLVM-IR, and thus it provides the same cross-device re-usability
as OpenCL. In theory, this allows us to generate GPU code for pretty
much any platform or device with a driver supporting OpenCL and
the cl_khr_spir extension2. In practice, it is not that simple.

According to its standard, SPIR is based off of LLVM-IR release ver-
sion 3, with SPIR 1.2 and 2.0 being based on IR versions 3.2 and
3.4 respectively [35, 41]. This is problematic, since there currently is
no target code generation back-end for SPIR in LLVM. The only way of
obtaining valid SPIR 1.2 or 2.0 code is through standalone compilers
or tools like Khronos Group’s SPIR generator [36]. We can also not
directly use our kernels’ LLVM-IR, even though SPIR is at its core just
LLVM-IR. This is because our extensions to Polly’s accelerator code
generation are found in the latest release and development versions
of LLVM/Polly, which are 5.0 and up. With the evolution from LLVM

3.0 to version 4.0, the IR has been subject to changes as well. Thus,
our kernel IR is not directly compliant to the SPIR standard, and as a
result cannot be read by most standard OpenCL driver implementa-
tions.

However, for this work we mainly focused our efforts on getting
SPIR code generation to work for Intel devices, where there are ways
of getting around that problem. Since Intel’s standard OpenCL driver
does not have the capability of handling the SPIR code produced
via our code generation method (expects standard flavor based on
LLVM-IR 3.2), our implementation utilizes a different driver on Intel
Platforms. Beignet is an open source implementation of the OpenCL
specification for Intel Platforms [7]. The driver allows for the creation
of OpenCL kernel programs from LLVM-IR files in valid SPIR format,
which is exactly what we need. Beignet’s driver back-end uses LLVM

4.0, which has two implications.

For one, LLVM 4.0 needs to be installed on the system. Our added
features however affect the most recent versions of LLVM, and thus,
two instances need to be available (version 4.0 installed for Beignet,
and a more recent copy containing our contributions).

2 cl_khr_spir is a platform extension that adds support to create OpenCL programs
from SPIR binaries [40]

18 architecture

Listing 3: Listing 2’s toy example, but in SPIR-ready LLVM-IR

1 target datalayout = "e−p:32:32:32− i1 :8:8− i8 :8:8− i16 :16:16−" \

2 " i32 :32:32− i64 :64:64−i128 :128:128−" \

3 " f32 :32:32−f64 :64:64−v16:16:16−v24:32:32−" \

4 "v32:32:32−v48:64:64−v64:64:64−v96:128:128−"\
5 "v128:128:128−v192:256:256−v256:256:256−" \

6 "v512:512:512−v1024:1024:1024 "
7 target triple = " spir−unknown−unknown"
8

9 define spir_kernel void @kernel(i32 addrspace(1)* %res)

10 !kernel_arg_addr_space !0 !kernel_arg_name !1

11 !kernel_arg_access_qual !1 !kernel_arg_type !1

12 !kernel_arg_type_qual !1 !kernel_arg_base_type !1 {

13 entry:

14 %0 = call i32 @__gen_ocl_get_group_id0()

15 %1 = call i32 @__gen_ocl_get_local_id0()

16 %2 = add i32 %0, %1

17 store i32 %2, i32* %res

18 ret void

19 }

20

21 declare spir_func i32 @__gen_ocl_get_group_id0()

22 declare spir_func i32 @__gen_ocl_get_local_id0()

23 !0 = !{i32 1}

24 !1 = !{!" "}

As a second implication, the LLVM-IR passed to Beignet when cre-
ating an OpenCL kernel program needs to adhere to the specifica-
tions as of version 4.0. Since the IR has not been subject to any major
changes from version 4.0 onwards, we can directly use our generated
code (which is based on the most recent version of LLVM-IR) without
any major changes, other than making it compliant to Beignet’s SPIR

flavor.

To obtain valid Beignet-SPIR code we follow a similar work-flow
as described in Section 2.1.2. Since our resulting code is modified
LLVM-IR, we can however directly embed our SPIR specific IR back into
our host program, without having to run it through an additional
target code generation back-end . Listing 3 shows the same toy
example used in Section 2.1.2 to explain CUDA specific IR, but this
time it is compliant to Beignet’s SPIR flavor.

The kernel function gets annotated with spir_kernel, indicating
the use of SPIR calling conventions. Our target triple and target

datalayout get set according to the SPIR 1.2 specification [35], and
all thread-indexing and -synchronization calls get assigned their SPIR

specific names (here they also get marked with the calling conven-
tion spir_func, which was not required for CUDA/PTX). Because

2.3 spir code generation 19

this code will be run by our OpenCL runtime interface, GPU mem-
ory pointer arguments also need to carry the correct address space
indicators (addrspace(1) in our toy example).

Finally, we have to take care of the metadata. SPIR does not re-
quire the maximum number of GPU threads to be marked and
since NVIDIA’s nvvm compiler is not involved, the annotation
nvvm.annotations can be left out. Instead, SPIR requires the kernel
functions to be annotated with information about their arguments.
Not all of those details are directly at our finger tips when generat-
ing the compute kernels, since they were not needed for CUDA and
have not been made readily available so far. However, Beignet luckily
handles that information in a sloppy way. Our kernel’s SPIR code is
deemed valid as long as every type of information Beignet looks for
is present (even if it is empty) with the exception of the argument ad-
dress space qualifier. This means that we only have to set the correct
address spaces for each kernel argument in kernel_arg_addr_space

(In our toy example this is only one argument with global address
space, so we set kernel_arg_addr_space to !{i32 1}). The rest of
the metadata fields can be set to an empty string since their value is
not important for the validity and runtime correctness of our code in
Beignet.

The resulting SPIR specific kernel IR now gets directly embedded
back into the host program, where it then gets passed to the OpenCL
runtime for execution. Here Beignet makes things a little more com-
plicated by not accepting the kernel in OpenCL’s standard function
clCreateProgramWithBinary. Instead, Beignet provides a new API
call named clCreateProgramWithLLVMIntel, which only accepts SPIR

kernels from a file input. Our GPU runtime library (data manage-
ment library) thus automatically detects if Beignet is available on the
system during execution, and writes our kernel to a temporary file,
passing it to Beignet’s special function.

It is important to note that Beignet needs to be at the active de-
velopment version. The latest release does not yet have support for
LLVM version 4.0, and with that will not be able to read our LLVM-IR.
Since it is a development build, things like the way the OpenCL pro-
gram creation are handled may be subject to change before we get
an official Beignet release supporting our SPIR code. However, major
changes should probably not be expected, and our code generation
can be very easily adapted to minor changes.

20 architecture

Listing 4: Listing 2’s toy example, but in AMDGPU-ready LLVM-IR

1 target datalayout = "e−p:32:32−p1:64:64−p2:64:64−p3:32:32−" \

2 "p4:64:64−p5:32:32− i64:64−v16:16−v24:32−" \

3 "v32:32−v48:64−v96:128−v192:256−v256:256−" \

4 "v512:512−v1024:1024−v2048:2048−n32:64 "
5 target triple = "amdgcn−amd−amdhsa−opencl"
6

7 define amdgpu_kernel void @kernel(i32 addrspace(1)* %res) {

8 entry:

9 %0 = call i32 @llvm.amdgcn.workitem.id.x()

10 %1 = call i32 @llvm.amdgcn.workgroup.id.x()

11 %2 = add i32 %0, %1

12 store i32 %2, i32* %res

13 ret void

14 }

15

16 declare i32 @llvm.amdgcn.workitem.id.x()

17 declare i32 @llvm.amdgcn.workgroup.id.x()

2.4 amd code generation

With our third contribution we try to further minimize the restrictions
under which we are kept by the current code generation method(s),
by providing Polly with target code generation for AMD GPUs. Luck-
ily for this we can fall back on one of the many LLVM back-ends
already implemented in the project, just like the aforementioned
NVIDIA NVPTX for CUDA PTX. The AMDGPU back-end provides
AMD Instruction Set Architecture (ISA) [1] code generation for AMD
GPUs, starting with the R600 family up until the current GCN fami-
lies [2]. This implies that we can follow pretty much the same steps
(with one addition which we discuss later) as for NVIDIA code gen-
eration, simply replacing the CUDA and NVPTX specific IR elements
with their AMD and AMDGPU specific counterparts.

Listing 4 shows our familiar toy example in AMDGPU back-end
ready LLVM-IR after our transformations. As with SPIR, we first adapt
our target datalayout and target triple to values specified by the
AMDGPU code generation back-end. The target triple here indicates
that the produced ISA will later be used as an OpenCL kernel, and
should thus follow some specific guidelines. We also change our ker-
nel function’s calling convention to amdgpu_kernel, mark OpenCL
memory object pointer arguments with the global address space qual-
ifier (addrspace(1)), and insert our AMD specific calls for thread-
indexing and -synchronization. The two examples for OpenCL’s local
and global ID are seen on lines 9 and 10 in our toy examples, with
their declarations on lines 16 and 17. Our AMD kernel IR does not

2.4 amd code generation 21

require any additional metadata to be added, so we can skip that step
and drop the NVIDIA specific nvvm annotations as well.

After running our newly transformed kernel IR through the
AMDGPU target code generation back-end, we obtain an ELF relo-
catable object file. This file standard can not directly be executed by
OpenCL, but must first be linked into an ELF shared object file. We
can use LLVM’s own linker LLD3 for that. Unfortunately, LLD can not
be called from within LLVM/Polly’s source code at this time, since it
is not available as a standard pass linked into LLVM. Thus, we have
to implement a workaround, by piping the ELF relocatable object file
output from the AMDGPU back-end into a temporary file. We then
call LLD as an external program using the C standard library func-
tion system, which passes a command string to the host environment,
telling the command processor to pass our temporary file through
LLD. It then blocks and returns when our LLD pass has completed. We
can then read back the now linked ELF shared object file and embed
it back in our host program code, where it then gets passed to the
OpenCL runtime interface in our data management library upon ex-
ecution. OpenCL can now create a working kernel program from it,
just like it would with NVIDIA PTX binaries generated by the NVPTX
back-end.

While this approach does not work for the standard AMD GPU
drivers, Radeon Open Compute (ROCm) takes care of this. ROCm is a
complete Linux kernel-driver and runtime stack that offers support
for our AMDGPU generated binaries. All AMD GPUs from the Fiji
family and up are supported [33]. However, ROCm’s general hardware
support is currently still very limited, making it available only on the
newer platforms with compatible host CPUs and the correct operat-
ing systems. In addition to that, ROCm is fairly young (2016) and still
under heavy development, so there are a number of bugs and things
to change. With that being said, this is a very future proof and robust
solution though. The hardware support is bound to grow in the fu-
ture, and our implementation is resistant to changes, since AMDGPU
back-end generated code should always be executable on the ROCm

stack.

3 LLD - The LLVM Linker: https://lld.llvm.org/

https://lld.llvm.org/

3
E VA L U AT I O N

3.1 opencl runtime

We begin our evaluation by looking at the difference in performance
when switching from the pre-existing CUDA runtime interface to
the newly provided OpenCL runtime. Since systems equipped with
NVIDIA GPUs can run both CUDA and OpenCL, we can get a fair,
direct comparison using the same hardware for both cases. Our test
system for this part of the evaluation runs Ubuntu 16.04.3 LTS (with
Linux kernel 4.8.0-59) and consists of an Intel Core i7-3930K processor
(6 cores, 12 hyper-threads @ 4.5 GHz - Overclocked), 16 gigabytes of
RAM and a NVIDIA GTX 680 GPU. CUDA tools is at version 8.0.44

with NVIDIA driver 375.66, and OpenCL version 1.2 running. For a
more detailed listing of the CPU and GPU specifications, see Table 1.

To evaluate the differences in performance between using the
OpenCL runtime over the CUDA version, we used 28 applications1

from the polybench 3.2 and 4.2.1 beta test suite [32]. Figure 2 shows
the performance gain when using Polly to optimize the code and
generate GPGPU code for the OpenCL runtime, compared to only
using clang’s -O3 optimization flag. In many cases, like the codes
of 2mm, correlation, covariance, gemm, symm, syr2k, and syrk, this
leads to massive performance gains when using polybench’s large
data set. We achieve a 16 fold runtime improvement for covariance

while 2mm, symm, and syr2k each give us 10 times better performance.

1 Since our contributions are added to an active development branch of Polly, there
have been a number of bugs surfacing during our evaluation. This has led to only
28 of the 30 polybench applications being compilable.

CPU i7-3930K GPU GTX 680

Architecture SandyBridge-E Architecture Kepler

Cores 6 Shader Blocks 8

Hyperthreads 12 Cores per block 192

Total cores 1,536

Boost clock 4.5 GHz (OC) Boost clock 1,085 MHz

Performance (f) 307 Gflops Performance (f) 3,250 Gflops

Memory 16 GB (DDR3) Memory 2 GB (GDDR5)

Table 1: Hardware specifications for NVIDIA platform

23

24 evaluation

Figure 2: Speedup when using GPGPU generation for NVIDIA with OpenCL
over standard compilation without Polly

The remaining applications’ performance gain is less noticeable at
this problem size, but could potentially be much larger when scal-
ing up the data size. It is also interesting to note that the program
atax suffered from the added polyhedral optimization and GPGPU
code generation. On average we get 2.8x better performance when
optimizing with Polly and accelerator mapping.

Figure 3 shows the direct performance comparison between the two
runtimes in the form of speedup when using OpenCL over CUDA.
We can see that 8(/28) programs performed slightly better, and 2(/28)
applications ran a little slower. However, the differences are rather
marginal, and one can thus say that the performance between the
two runtimes is pretty much equivalent. With that we can conclude
that the data management library can be directed to use either one of
the runtime interfaces on NVIDIA systems without suffering a per-
formance penalty. This also leads us to believe that any performance
differences observed in the future on alternative device architectures

Figure 3: Speedup of using the OpenCL runtime versus the CUDA runtime

3.2 spir code generation on intel 25

(with corresponding code generation provided) in the same perfor-
mance category can be linked to their architectural differences and
not to the use of a different runtime interface.

3.2 spir code generation on intel

We will now investigate the performance of our Intel SPIR code gen-
eration, compared to using Polly’s default optimization without ac-
celerator mapping. Our test bench for this is a mobile system that
includes an Intel integrated GPU (Intel HD Graphics (IHDG) 5500). It
holds an Intel Core i7-5500U processor (2 cores, 4 hyper-threads @ 3.0
GHz Turbo) and 8 gigabytes of RAM. Similarly to our NVIDIA test
system we’re running Ubuntu 16.04.3 LTS (with Linux kernel 4.4.0-
93) and OpenCL version 1.2, as provided by Beignet 1.4. The specific
Beignet development version is git-4933bf9. Details on the CPU and
GPU specifications can be seen in Table 2.

We use a collection of 24
2 polybench 3.2 [32] kernels to evaluate

our runtime performance. We tried compiling all the programs with
polybench’s extra large dataset, but 8 of them (atax, bicg, doitgen,
durbin, fdtd-apml, gesummv, gramschmidt, and jacobi-2d) immedi-
ately ran out of memory upon execution, since the Intel platform
used does not have enough RAM for those applications with that
problem size. The size for those special cases was thus changed to
smaller datasets, which worked flawlessly. The result from those men-
tioned cases is displayed in Figure 4, where we plot the speedup
from using GPGPU code generation and running the generated SPIR

code with our OpenCL runtime interface via the Beignet driver, com-
pared to standard -polly optimization and only clang’s -O3. For atax,
bicg, durbin, fdtd-apml, and gesummv we notice a very hefty slow-
down compared to their non-accelerator-mapped (just -polly) coun-
terparts. Overall the programs perform mostly equivalent to when we
skip polyhedral optimization entirely (except atax, fdtd-apml, and
gesummv). We can conclude that this is with a high probability due to

2 For the same reason mentioned in Section 3.1

CPU i7-5500U GPU IHDG 5500

Architecture Broadwell-U Architecture Broadwell GT2

Cores 2 Cores 192

Hyperthreads 4

Boost clock 3.0 GHz Boost clock 950 MHz

Performance (f) 192 Gflops Performance (f) 364.8 Gflops

Memory 8 GB (DDR3) Memory 3 GB (DDR3)

Table 2: Hardware specifications for Intel platform

26 evaluation

Figure 4: Speedup when using GPGPU generation for Intel over standard
Polly optimizations and only -O3 - Smaller datasets

Figure 5: Speedup when using GPGPU generation for Intel over standard
Polly optimizations and only -O3 - Extra large dataset

the additional overhead caused by GPGPU code execution, which is
negatively noticeable with this relatively small problem size. If there
were more RAM available, those programs would most likely per-
form better once the problem size starts to increase past a certain
threshold under which accelerator mapping is not worth it and does
not yield any performance gains.

That hypothesis gets backed up when we look at the results
from executing our extra large dataset kernels, the speedup of
which is plotted in Figure 5. Here, it is visible that only 4 cases
(correlation, fdtd-2d, jacobi-1d, and ludcmp) experienced a notice-
able slowdown when compared to the non-accelerator-mapped ver-
sions (correlation still outperforms its counterpart without polyhe-
dral optimizations by a factor of 8). For 7 cases the GPU mapping
has led to significant improvements in runtime, namely for 2mm, adi,
floyd-warshall, symm, syr2k, syrk, and trmm. In some cases (symm)
we experience an up to 22x speedup compared to CPU-only optimiza-
tions using Polly. The remaining kernels performed similarly within
the margin of error compared to their non-GPU versions. Overall, in-
cluding the less than optimal smaller test cases, our average speedup
over optimizations using only the -polly flag is a factor of 2.3, with
a 4x average speedup compared to clang’s -O3 optimizations. When
timing those programs using smaller datasets, those improvements
drop significantly. This implies that scaled up versions of those pro-
grams would probably show even bigger improvements in runtime
performance.

3.2 spir code generation on intel 27

Figure 6: Speedup simulation of exploiting unified memory on Intel plat-
form

While those results are already really good, the Intel platform has
another trick up its sleeve. Intel’s integrated graphics in Intel CPUs
are built according to an unified memory architecture. This stands in
contrast to the so far more common Non Unified Memory Architec-
ture (NUMA), where the GPU and host CPU have their own device
specific RAM. The implication for systems built on the NUMA model
has been that in order for kernels to be executed on an accelerator
efficiently, the necessary data first needed to be transferred into GPU
specific memory. After the kernel’s completion, the result data needs
to be copied back into host memory. Both of those transitions obvi-
ously cost time, and skipping that step could lead to massive overall
performance improvements, especially if the computational effort is
rather low in comparison to the amount of data transferred between
GPU and host memory.

Our implementation is currently not capable of exploiting unified
memory on Intel devices, but nonetheless we wanted to show just
how big of an improvement one could achieve by utilizing the same
RAM between GPU and host CPU. For this we picked out the 12

polybench kernels where Polly decided GPU mapping was worth it,
and we disabled the data copying between host and accelerator. This
lets us simulate the kernel runtime when Polly’s data management
library is aware of unified memory architectures and knows how to
exploit them. Figure 6 shows the performance improvements of said
scenario in the form of speedup over the corresponding NUMA ver-
sions. We can see that the runtime gets improved noticeably, leading
to an on average 3.2x speedup.

Figure 7 shows the percentage of time spent just copying data be-
tween host and accelerator. This obviously stands in stark correla-
tion to Figure 6, and we can see that for some cases (like gemm, symm,
syr2k, and syrk) up to almost 85% of the execution time gets spent
with data transfers. On average the time spent on computation is only
about 45%, which means that especially large problems would benefit
massively from being able to skip data transfers entirely and instead
utilize a zero-copy behavior offered by unified memory architectures

28 evaluation

Figure 7: Percentage of kernel runtime spent copying data on Intel platform

like Intel integrated graphics. See Appendix A for some more perfor-
mance analyses and overviews.

3.3 amd code generation

Our runtime evaluation for AMD devices unfortunately did not turn
out the way we anticipated. This is not because we obtained bad re-
sults, but rather because we were unable to gather any significant
data in the first place. As mentioned in Section 2.4, ROCm’s hardware
support is still very limited. This led to two of our initial test systems
equipped with AMD Fiji (R9 Nano) GPUs to be ruled out shortly after
beginning the testing, since parts of ROCm’s stack were non-functional.
We finally managed to hack together a system that fits all of the ROCm

requirements and managed to get test samples running.

Unfortunately, this was not the end of our problems. When starting
to run our tests, we quickly noticed that some of them would initially
run correctly, but at some point the GPU would fail and cause every
program following after that to hang. We immediately got in touch
with ROCm developers and tried to resolve this issue. Due to the time
limit set for our work, we have however been unable to reach a solu-
tion up to this point. The current suspicion is that this is a problem
in the base AMDGPU driver inside the kernel. The responsible de-
velopers have been made aware of this and are looking into it. The

CPU i7-7700 GPU R9 Nano

Architecture Kaby Lake Architecture Fiji

Cores 4 Cores 4,096

Hyperthreads 8

Boost clock 4.2 GHz Boost clock 1,000 MHz

Performance (f) 537 Gflops Performance (f) 8,192 Gflops

Memory 32 GB (DDR4) Memory 4 GB (HBM)

Table 3: Hardware specifications for AMD platform

3.4 summary 29

Figure 8: Comparison of the speedup obtained via mapping to accelerator
versus clang’s -O3 optimization on the Intel and NVIDIA platform

relevant and necessary evaluation and testing will be conducted as
future work, once this issue has been resolved, but can sadly not be
included in this report.

It is highly unlikely that our code generation has any impact on this
behavior, since everything our code can do is harmless and should
be handled by OpenCL. Invalid memory accesses, should they ever
occur, would be reported and blocked by the OpenCL runtime, and
thus are unlikely to be the cause for the GPU’s failure.

The fact that we did not get any evaluation data is especially sad
when we take a look at the hardware specifications for our AMD sys-
tem in Table 3 and compare that to the specifications for our NVIDIA
system in Table 1. When considering the already great improvements
in runtime from generating GPGPU code for said NVIDIA GPU, one
can extrapolate that the performance gain on our AMD system would
have been even more impressive. To date, we unfortunately cannot
back this up.

3.4 summary

Each of the platforms targeted by our work (NVIDIA, AMD, Intel)
have their own strengths and weaknesses. Performance gains can
be made on every one of them, with different implications. NVIDIA
GPUs might have more raw power, leading to better performance on
compute-heavy kernels, whereas Intel integrated graphics can make
use of unified memory, which (in the future) can show a bigger im-
pact on particularly memory-heavy compute kernels.

Figure 8 shows a direct speedup comparison between the 23 poly-
bench 3.2 kernels that were able to be compiled and executed on both
our NVIDIA and Intel test systems. It is clearly visible that for most

30 evaluation

cases we can observe a very similar trend in terms of how much per-
formance we gained by mapping the kernels to the corresponding
systems’ accelerator. However, there are slight differences here and
there, which might indicate what program types might run more effi-
ciently on what platform. It is important to point out that the speedup
shown for the Intel platform here are including the memory transfer
between host CPU and GPU.

We would like to point out that while we are using very (relatively
speaking) simple programs from the polybench test suite [32], our
provided solution is very reusable and generally applicable. Any sort
of program containing SCoPs can be optimized by Polly and mapped
to an accelerator device, as long as it belongs to one of the architec-
tures discussed here. This makes it a very powerful tool, as some (par-
ticularly poorly optimized) applications might greatly benefit from
the massively parallel Single Instruction Multiple Data (SIMD) archi-
tecture of GPUs.

4
F U T U R E W O R K

This work builds a solid foundation for a number of interesting future
projects. We would like to propose a few ideas and plans, and point
out a few currently ongoing projects related to our work.

4.1 spir-v

With our contributions, we tried to address a large number of plat-
forms by providing SPIR code generation, but sadly the approach we
had to take is not entirely satisfactory, and will only address Intel de-
vices. We are thus still relatively limited. However, there is currently
an ongoing discussion [47] about integrating a SPIR-V target code
generation back-end natively into LLVM.

SPIR-V is Khronos group’s successor standard to SPIR, with a
few additional goals. It should easily map to other intermediate
languages, and it should be low-level enough to require a reverse-
engineering step to reconstruct source code [37], which allows for
some form kernel code protection. In addition to that, SPIR-V is
standard in the OpenCL 2.1 specification, meaning that every device
driver supporting OpenCL 2.1 automatically allows for the creation
of kernel programs from SPIR-V binaries with the newly provided
API function clCreateProgramWithIL.

While not a lot of device drivers support the OpenCL 2.1 standard
at this point, the number of supporting architectures is bound to grow
in the near future. With many devices allowing kernel creation from
SPIR-V, the integration of a corresponding target code generation
back-end into LLVM in theory implies that the addition of GPU code
generation for all supporting architectures should be trivial. We can
simply change the back-end specific points mentioned in Section 2.1.2
and Section 2.4 to address the SPIR-V back-end instead of NVPTX or
AMDGPU respectively, and add a call to clCreateProgramWithIL to
our GPU runtime library. This would theoretically eventually open
up GPU code generation to all OpenCL (2.1) supporting device archi-
tectures.

4.2 performance models

With the capability of compiling the same source code for a larger
amount of different GPU architectures and devices, we have the op-
tion of creating performance models for our programs based on run-

31

32 future work

time evaluations. Such performance models could show potential cor-
relations between our problem type or specific patterns in the source
code, and the associated execution time on a particular device archi-
tecture. Based on such correlations one could decide on what archi-
tecture best to target for a specific program when trying to optimize
a particular parameter (like execution time).

4.3 concurrent heterogeneity

It would be interesting to have the capability of executing kernel code
on multiple different accelerators concurrently. If a system for exam-
ple contains an integrated Intel GPU, plus an additional dedicated
graphics card (say NVIDIA), it would be great to have the option
of harnessing their combined power at once, by splitting the kernel
computation up and distributing it amongst the devices. Our con-
tributions lay an important foundation for that, since we can now
generate code for both of the devices and embed both architecture
specific code modules back into our host binary.

Additionally, the aforementioned performance models could help
with the decision on which available compute devices to best utilize,
and whether or not parallel execution on multiple accelerators makes
sense. This could be done at runtime, allowing for truly portable bi-
naries, or at compile time to shrink binary size but confine portability.
Currently we are only able to generate GPU code for one specific de-
vice architecture at a time, but for this it would maybe make sense to
provide such larger, more portable binaries, which contain multiple
different accelerator codes of the same kerenls for different architec-
tures.

4.4 architecture specific optimizations

The original code generation methods used in Polly have been de-
signed with CUDA in mind. However, now that we are generating
code for different architectures, we are potentially missing out on
performance boosts by not exploiting certain device architecture spe-
cific strengths and weaknesses. The next step in optimizing our multi-
device code generation would be to add some optimizations tailored
to the selected architecture(s).

4.5 exploiting unified memory

In Section 3.2 we have observed the positive impact of unified mem-
ory systems on the runtime of GPU-mapped programs with and Intel
integrated graphics chip. However, Intel is not the only platform offer-
ing an alternative to the traditional NUMA model. AMD and Intel both

4.5 exploiting unified memory 33

offer chips featuring an unified memory architecture with their AMD
APUs and Intel integrated graphics respectively. For both of these
platforms it would thus be very interesting and massively beneficial
to extend Polly’s GPU data management library with the capability
of detecting said unified memory scenario and exploiting it.

Thankfully, this is not a very hard thing to do. In fact, it only in-
volves telling OpenCL to use host memory when typically allocating
device RAM, and then supplying it with a valid host memory pointer.
This can easily be done in Polly with a bit of minor refactoring. Since
this was not possible anymore in our work due to timely restrictions,
we will leave this as feature work. Implementing such a zero-copy be-
havior can lead to huge speedups, particularly for kernels that spend
almost 85% of their runtime just copying data to and from GPU mem-
ory, as observed in Section 3.2. For more information on Intel’s mem-
ory model and how to easily exploit it for OpenCL, see Lake [15].

5
R E L AT E D W O R K

There are many solutions of mapping code to the heterogeneous accel-
erator space. The most obvious ones are those previously discussed
here, namely OpenCL [39] and CUDA [26]. Using one of those two ap-
proaches gives the necessary flexibility and almost direct control over
the GPU. However they drastically increase the complexity of GPGPU
programs by introducing separate compute kernels and various boil-
erplate code. There are a number of approaches that try to simplify
this procedure by providing directive statements. Such approaches
like OpenARC [23], OpenMPC [22], OpenACC [46], OpenMP for ac-
celerator [9], and HMPP [12] reduce the complexity by quite a lot by
providing pragma based statements to direct the generation and han-
dling of accelerator code. Polly contrasts this by eliminating the need
for annotations, instead automatically detecting SCoPs in the program
source code and deciding on a beneficial mapping strategy [16].

However, Polly is not the only project trying to detect potential
parallelism in the source code automatically, and then mapping it to
GPU code. Other polyhedral approaches include Baskaran’s work [5]
which can be found in the R-Stream compiler [24] in its improved
form. The most refined solution so far is PPCG [43, 45], but it still re-
lies on preprocessed code to be effective. Polly and its GPGPU code
generation are the first solution that bring advanced GPU mapping
techniques to a large set of programs by not enforcing specific coding
styles and by automatically choosing when to perform GPU map-
ping [16]. Other approaches not based on polyhedral optimization
techniques include Par4All [3], which uses an abstract interpretation
based approach, and a proposal made by Baghdadi et al. [4], which
has proven to be too costly in practice though.

35

6
C O N C L U S I O N

Our contributions provide an easy way of compiling GPGPU code
retrieved from Polly for not just NVIDIA accelerators, but also AMD
and Intel devices. While our AMD-ready binaries are at the moment
still relatively poorly evaluated and the ROCm stack brings its own set
of problems and limitations, the chosen approach should in the fu-
ture be a rather robust and stable solution. In addition to that, access
to the AMD platform can potentially bring runtime improvements for
certain kernels, since the architecture might suit the required compu-
tations better. Plus, while ROCm’s support for AMD APUs with uni-
fied memory architectures is currently still limited, the developers are
at work with extending said compatibility, which in the future adds
capabilities of utilizing unified memory for AMD compute kernels.

Our SPIR code generation is sadly limited to the Intel platform and
relies on an alternative driver (Beignet) to work. But having access
to an array of Intel accelerator devices is very interesting, especially
when trying to leverage unified memory in the future. As seen in
Section 3.2, even on a relatively low-memory and low-power Intel
mobile system, there are a number of computational problems that
can greatly benefit from such an accelerator mapping. The successful
generation of SPIR compliant kernel IR also serves as a proof of con-
cept for the potential extension of SPIR code generation in the future,
showing that it is a viable option for delivering device independent
binaries to supporting drivers and architectures.

Finally, our OpenCL runtime interface in Polly’s data management
library builds an important foundation for lots of future additions to
the accelerator code generation and creation of truly multi-device bi-
naries. Using the newly provided OpenCL runtime interface over the
previous CUDA API does not impact our program runtime, nor does
it slow down compilation. This adds an immense amount of flexibil-
ity and is the basis on which SPIR-V code generation mentioned in
Section 4.1 will or would be built.

In conclusion, while the current state of Polly’s multi-device GPU
code generation is not yet entirely satisfactory, we can already show
great success in adding an additional device architecture (Intel) to the
repertoire and delivering runtime improvements on it. A third archi-
tecture (AMD) remains yet to be fully evaluated, but the provided
code generation shows that targets with a back-end integrated into
LLVM are relatively easy to add in the future. Polly is now one step
closer to having multi-device accelerator mapping and has had its
doors opened for lots of interesting ideas and extensions.

37

Part III

A P P E N D I X

A
A P P E N D I X

Figure 9: Performance gain of GPU mapping with and without zero-copy
behavior on Intel platform, compared to CPU-only optimization
(-polly) and clang’s -O3

Figure 10: Speedup of GPU mapping with zero-copy behavior over clang’s
-O3 on Intel platform

41

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

Signature(s)

MULTI-DEVICE GPU-CODE GENERATION WITH LLVM

SCHAAD PHILIPP

ZÜRICH, 11.09.2017

B I B L I O G R A P H Y

[1] AMD Graphics Core Next Architecture, Generation 3. Reference
Guide. 2017. url: http : / / developer . amd . com / wordpress /

media/2013/12/AMD_GCN3_Instruction_Set_Architecture_

rev1.1.pdf (visited on 09/10/2017).

[2] AMDGPU Backend. 2017. url: https : / / llvm . org / docs /

AMDGPUUsage.html#introduction (visited on 09/10/2017).

[3] Mehdi Amini, Béatrice Creusillet, Stéphanie Even, Ronan
Keryell, Onig Goubier, Serge Guelton, Janice Onanian McMa-
hon, François-Xavier Pasquier, Grégoire Péan, and Pierre Vil-
lalon. “Par4all: From convex array regions to heterogeneous
computing.” In: IMPACT 2012: Second International Workshop on
Polyhedral Compilation Techniques HiPEAC 2012. 2012.

[4] Soufiane Baghdadi, Armin Größlinger, and Albert Cohen.
“Putting automatic polyhedral compilation for GPGPU to
work.” In: Proceedings of the 15th Workshop on Compilers for Paral-
lel Computers (CPC’10). 2010.

[5] Muthu Baskaran, Jj Ramanujam, and P Sadayappan. “Auto-
matic C-to-CUDA code generation for affine programs.” In:
Compiler Construction. Springer. 2010, pp. 244–263.

[6] Cédric Bastoul. “Code Generation in the Polyhedral Model Is
Easier Than You Think.” In: PACT’04 IEEE International Con-
ference on Parallel Architecture and Compilation Techniques (Sept.
2004), pp. 7–16.

[7] Beignet. 2017. url: https : / / www . freedesktop . org / wiki /

Software/Beignet/ (visited on 09/10/2017).

[8] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Al-
bert Cohen, and Cédric Bastoul. “The Polyhedral Model Is
More Widely Applicable Than You Think.” In: ETAPS Interna-
tional Conference on Compiler Construction (Mar. 2010), pp. 283–
303.

[9] James Beyer, Eric Stotzer, Alistair Hart, and Bronis de Supin-
ski. “OpenMP for accelerators.” In: OpenMP in the Petascale Era
(2011), pp. 108–121.

[10] Shekhar Borkar and Andrew A. Chien. “The Future of Micro-
processors.” In: Communications of the ACM 54.5 (May 2011).

[11] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and
A. R. LeBlanc. “Design of Ion-Implanted MOSFET’s with Very
Small Physical Dimensions.” In: IEEE Journal of Solid-State Cir-
cuits 9.5 (Oct. 1974).

45

http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf
https://llvm.org/docs/AMDGPUUsage.html#introduction
https://llvm.org/docs/AMDGPUUsage.html#introduction
https://www.freedesktop.org/wiki/Software/Beignet/
https://www.freedesktop.org/wiki/Software/Beignet/

46 Bibliography

[12] Romain Dolbeau, Stéphane Bihan, and François Bodin. “HMPP:
A hybrid multi-core parallel programming environment.” In:
Workshop on general purpose processing on graphics processing units
(GPGPU 2007). Vol. 28. 2007.

[13] Paul Feautrier. “Dataflow Analysis of Array and Scalar Refer-
ences.” In: International Journal of Parallel Programming 20.1 (Feb.
1991), pp. 23–53.

[14] Paul Feautrier and Christian Lengauer. “Polyhedron Model.”
In: Encyclopedia of Parallel Computing (2011), pp. 1581–1592.

[15] Getting the Most from OpenCL 1.2. How to Increase Performance
by Minimizing Buffer Copies on Intel Processor Graphics. 2014. url:
https://software.intel.com/en-us/articles/getting-the-

most-from-opencl-12-how-to-increase-performance-by-

minimizing-buffer-copies-on-intel-processor-graphics

(visited on 07/02/2017).

[16] Tobias Grosser and Torsten Hoefler. “Polly-ACC: Transparent
compilation to heterogeneous hardware.” In: Proceedings of the
30th International Conference on Supercomputing (ICS’16). June
2016.

[17] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. “Poly-
hedral AST generation is more than scanning polyhedra.”
In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 37.4 (2015), p. 12.

[18] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Sim-
bürger, Armin Grösslinger, and Louis-Noël Pouchet. “Polly -
Polyhedral optimization in LLVM.” In: IMPACT (2011).

[19] Richard Johnson, David Pearson, and Keshav Pingali. “The Pro-
gram Structure Tree: Computing Control Regions in Linear
Time.” In: Proceedings of the ACM SIGPLAN 1994 conference on
Programming language design and implementation. Vol. 29. 6. ACM.
1994, pp. 171–185.

[20] LLVM. The LLVM Compiler Infrastructure. 2017. url: http://
llvm.org (visited on 07/02/2017).

[21] Chris Lattner and Vikram Adve. “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation.” In: Pro-
ceedings of the International Symposium on Code Generation and Op-
timization: Feedback-directed and Runtime Optimization. CGO ’04.
IEEE Computer Society, 2004, pp. 75–.

[22] Seyong Lee and Rudolf Eigenmann. “OpenMPC: Extended
OpenMP programming and tuning for GPUs.” In: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Computer So-
ciety. 2010, pp. 1–11.

https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics
https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics
https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics
http://llvm.org
http://llvm.org

Bibliography 47

[23] Seyong Lee and Jeffrey S Vetter. “OpenARC: open accelerator
research compiler for directive-based, efficient heterogeneous
computing.” In: Proceedings of the 23rd international symposium on
High-performance parallel and distributed computing. ACM. 2014,
pp. 115–120.

[24] Allen Leung, Nicolas Vasilache, Benoît Meister, Muthu
Baskaran, David Wohlford, Cédric Bastoul, and Richard Lethin.
“A mapping path for multi-GPGPU accelerated computers from
a portable high level programming abstraction.” In: Proceedings
of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units. ACM. 2010, pp. 51–61.

[25] G. E. Moore. “Cramming more components onto integrated cir-
cuits.” In: Electronics 38.8 (Apr. 1965).

[26] NVIDIA Accelerated Computing. CUDA Zone. 2017. url: https:
//developer.nvidia.com/cuda-zone (visited on 07/20/2017).

[27] OpenCL Conformant Products. List of Products Conforming to the
OpenCL standard. 2017. url: https : / / www . khronos . org /

conformance/adopters/conformant-products#opencl (visited
on 08/11/2017).

[28] OpenCL. The open standard for parallel programming of heteroge-
neous systems. 2017. url: https://www.khronos.org/opencl/
(visited on 09/10/2017).

[29] John D. Owens, Mike Houston, David Luebke, Simon Green,
John E. Stone, and James C. Philips. “GPU Computing.” In: Pro-
ceedings of the IEEE 96.5 (May 2008).

[30] Polly. LLVM Framework for High-Level Loop and Data-Locality Op-
timizations. 2017. url: http : / / polly . llvm . org (visited on
07/02/2017).

[31] Polyhedral Software. Tools and libraries to translate a polyhedral rep-
resentation into source code. 2017. url: http://www.polyhedral.
info/software.html (visited on 09/10/2017).

[32] Louis-Noël Pouchet. Polybench/C. the Polyhedral Benchmark suite.
2017. url: web.cse.ohio-state.edu/~pouchet.2/software/
polybench/ (visited on 09/10/2017).

[33] ROCm, a New Era in Open GPU Computing. Platform for GPU-
Enabled HPC and Ultrascale Computing. 2017. url: https://rocm.
github.io/install.html (visited on 09/10/2017).

[34] Jon Peddie Research. Mobile Devices and the GPUs Inside. Report.
Jon Peddie Research, Oct. 2013.

[35] SPIR 1.2 Specification for OpenCL. 2013. url: https : / / www .

khronos.org/files/opencl-spir-12-provisional.pdf (vis-
ited on 09/09/2017).

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://www.khronos.org/conformance/adopters/conformant-products#opencl
https://www.khronos.org/conformance/adopters/conformant-products#opencl
https://www.khronos.org/opencl/
http://polly.llvm.org
http://www.polyhedral.info/software.html
http://www.polyhedral.info/software.html
web.cse.ohio-state.edu/~pouchet.2/software/polybench/
web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://rocm.github.io/install.html
https://rocm.github.io/install.html
https://www.khronos.org/files/opencl-spir-12-provisional.pdf
https://www.khronos.org/files/opencl-spir-12-provisional.pdf

48 Bibliography

[36] SPIR Generator. 2017. url: https://github.com/KhronosGroup/
SPIR (visited on 09/10/2017).

[37] SPIR-V Specification. 2017. url: https://www.khronos.org/
registry / spir - v / specs / 1 . 0 / SPIRV . pdf (visited on
09/10/2017).

[38] SPIR(V). The first open standard intermediate language for parallel
compute and graphics. 2017. url: https://www.khronos.org/
spir (visited on 07/02/2017).

[39] John E. Stone, David Gohara, and Guochun Shi. “OpenCL: A
Parallel Programming Standard for Heterogeneous Computing
Systems.” In: Computing in Science and Engineering 12.3 (May
2010), pp. 66–73.

[40] The OpenCL Extension Specification. 2016. url: https : / / www .

khronos . org / registry / OpenCL / specs / opencl - 2 . 0 -

extensions.pdf (visited on 09/10/2017).

[41] The SPIR Specification. 2014. url: https://www.khronos.org/
registry / SPIR / specs / spir _ spec - 2 . 0 . pdf (visited on
09/10/2017).

[42] Sven Verdoolaege. “isl: An Integer Set Library for the Poly-
hedral Model.” In: Mathematical Software - ICMS 2010. Lecture
Notes in Computer Science 6327 (2010), pp. 299–302.

[43] Sven Verdoolaege. “PENCIL support in pet and PPCG.” PhD
thesis. INRIA Paris-Rocquencourt; INRIA, 2015.

[44] Sven Verdoolaege. Presburger formulas and polyhedral compilation.
2016. url: http://polyhedral.info/2016/01/26/tutorial.
html (visited on 07/12/2017).

[45] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Igna-
cio Gómez, Christian Tenllado, and Francky Catthoor. “Polyhe-
dral parallel code generation for CUDA.” In: ACM Trans. Ar-
chit. Code Optim. 9.4 (Jan. 2013), 54:1–54:23. issn: 1544-3566. doi:
10.1145/2400682.2400713.

[46] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter
an Mey. “OpenACC—first experiences with real-world applica-
tions.” In: Euro-Par 2012 Parallel Processing (2012), pp. 859–870.

[47] Nicholas Wilson. [llvm-dev] [SPIR-V] SPIR-V in LLVM. 2017.
url: http://lists.llvm.org/pipermail/llvm- dev/2017-
May/112538.html (visited on 09/09/2017).

https://github.com/KhronosGroup/SPIR
https://github.com/KhronosGroup/SPIR
https://www.khronos.org/registry/spir-v/specs/1.0/SPIRV.pdf
https://www.khronos.org/registry/spir-v/specs/1.0/SPIRV.pdf
https://www.khronos.org/spir
https://www.khronos.org/spir
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-extensions.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-extensions.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-extensions.pdf
https://www.khronos.org/registry/SPIR/specs/spir_spec-2.0.pdf
https://www.khronos.org/registry/SPIR/specs/spir_spec-2.0.pdf
http://polyhedral.info/2016/01/26/tutorial.html
http://polyhedral.info/2016/01/26/tutorial.html
http://dx.doi.org/10.1145/2400682.2400713
http://lists.llvm.org/pipermail/llvm-dev/2017-May/112538.html
http://lists.llvm.org/pipermail/llvm-dev/2017-May/112538.html

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	1 Introduction
	1.1 Contributions
	1.2 Background
	1.2.1 GPU Computing
	1.2.2 OpenCL and SPIR(-V)
	1.2.3 Presburger Sets and Relations
	1.2.4 Polyhedron Model
	1.2.5 Polly

	Multi-Device GPU-Code Generation in LLVM
	2 Architecture
	2.1 Overview
	2.1.1 GPGPU Code Generation
	2.1.2 CUDA Code Generation

	2.2 OpenCL Runtime
	2.3 SPIR Code Generation
	2.4 AMD Code Generation

	3 Evaluation
	3.1 OpenCL Runtime
	3.2 SPIR Code Generation on Intel
	3.3 AMD Code Generation
	3.4 Summary

	4 Future Work
	4.1 SPIR-V
	4.2 Performance Models
	4.3 Concurrent Heterogeneity
	4.4 Architecture Specific Optimizations
	4.5 Exploiting Unified Memory

	5 Related Work
	6 Conclusion

	Appendix
	A Appendix
	B Declaration
	Bibliography

